

Coherent Elastic Neutrino-Nucleus Scattering with Cryogenic Crystal Detectors

Enectali Figueroa-Feliciano

Overview

- Coherent Elastic Neutrino-Nucleus Scattering
- Phonon detectors
- Ricochet at a Reactor
- Ricochet using electron capture source
- Conclusion

Coherent Elastic v-Nucleus Scattering

$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} Q_W^2 M_A \left(1 - \frac{M_A T}{2E_\nu^2} \right) F(q^2)^2$$

- σ: Cross Section
- T: Recoil Energy
- E_v: Neutrino
 Energy

- G_F: Fermi Constant
- Qw: Weak Charge
- M_A: Atomic Mass
- F: Form Factor

No flavor-specific terms!!! Same rate for v_e , v_μ , and v_τ

Low-energy recoils produce different products...

CDMS II Detectors

CDMS II Detectors

CDMS II Detectors

Luke Energy $= \Delta V$ [e N_{eh}]

 $P_{tot} = E_{recoil} + E_{Luke}$

Luke phonons are used to read charge in special CDMSlite mode

Getting Energy to the Sensors

CDMS Detector Monte Carlo (DMC)

- We developed a Matlabbased Detector Monte Carlo (DMC) which incorporates the physics of phonon transport, electron and hole transport, and TES energy collection and response.
- The output can be piped to our standard processing software and compared side-to-side with real data.
- The SLAC group has transported the DMC to GEANT4 and incorporated it into our SuperCDMS GEANT simulation

Advanced Test Reactor (ATR), Idaho Nat. Lab.

- 110 MW Thermal Reactor
- $2x10^{19} \text{ v/s}$
- 1.2x10¹² v/cm²/s
 @ 11 meters from core
- 6-8 weeks on, 1-2 weeks off operating cycle

ATR experimental site

- Potential Sites:
 - In first basement (outer shim corridor),
 7 m from the core
 - In second basement,
 11 m from the core

CNS Integrated Rate at Various Reactors

Ricochet Phase 1: SuperCDMS Tower at a Reactor

- Leverage R&D and Engineering being done by the SuperCDMS G2 Experiment.
- 1 Tower holds 6 detectors, 100 eVnr Threshold
- 4 Si Detectors = 2.4kg Si = 11 CEvNS events per day
- 2 Ge Detectors = 2.8kg Ge = 26 CEvNS events per day
- >7000/1000/400 events per month at the SONGS, ATR, and MIT reactors
- >20 events per month at the SNS (for comparison)

Backgrounds

We have a good handle on the signal, but what about the backgrounds?

We have been working on this at MIT, but today we are only showing a work in progress..

We assume no electron/nuclear recoil discrimination, thus our backgrounds are composed of γ , β , η , and η coming from:

- Cosmogenic backgrounds
- Radiogenic backgrounds
- "Reactogenic" backgrounds

We are measuring the gamma and neutron backgrounds directly...

Ricochet Monte Carlo in GEANT4

Ricochet Monte Carlo in GEANT4

Cosmogenic Backgrounds

Putting together what we have so far...

- Created simulated signal and background spectra for MITR and ATR sites.
- What is in:
 - CEVNS signal
 - Cosmogenics: full CRY simulation with latitude, altitude, and seasonal corrections
 - U, Th, and K in Poly and Pb
 - L-shell electron capture lines from cosmogenic activation of Ge due to the isotopes: 68Ge, 60Co, 65Zn, 58Co, 57Co, 56Co, 54Mn, 55Fe

- What is <u>not</u> in:
 - Residual U, Th contamination of copper housing
 - Cosmogenic or "Reactogenic" activation in shields and housing
 - Radon daughters (surf. evnts)
 - Neutron Background from reactor
 - Unknowns (atomic transitions, etc..)
- This is a work in progress!!!

MIT Simulated Spectrum

Conclusions

- A SuperCDMS Tower deployed at a reactor would see thousands of CEvNS events.
- The technology development, engineering design, readout, and operating procedures are all being done and paid for by the SuperCDMS SNOLAB Project.
- Background simulations and measurements need to be improved to understand the requirements of the shield around the detectors, including the need for active veto detectors.
- We are currently measuring the neutron background spectrum at MITR with two NCD detectors from SNO moderated by various layers of PVC.
- Ricochet could be deployed at a reactor in the next few years.

Backup Slides

Neutrons at MITR

- The room at MITR was designed for Boron Neutron Capture Therapy, a type of cancer therapy using epithermal neutrons.
- The room has a neutron beamline to deliver the neutrons from the reactor to the patient and moderate them into epithermal neutrons.
- When not in use, the beamline has a neutron "shutter" made of aluminum, PTFE, lead, water, and boronated concrete.
- A thesis with a detailed MCNP simulation of the reactor, the shutter, and the actual room exists.

Need to measure neutron flux over 7 orders of magnitude with high precision

Neutron monitoring

Use of He3 Neutron Capture Detector (NCD) based on the following process:

$$n + ^{3} He \rightarrow p + t \quad (Q = 764 \text{ keV})$$

- Cylinder shape: 200 cm long, 5.08 cm diameter => active volume ~ 4000 cm³

- **Gaseous TPC:** 85% 3He + 15% CF4 @ 2.53 bar

- Charge readout: charge preamplifier Canberra 2001A

- Optimal HV: 1.95 kV

- Energy resolution @ 764 keV: 3.3%

Neutron monitoring

A bonner sphere approach

NCD are mostly sensitive to thermal neutrons (cross section $\sim 10^4$ barns)

Use layers of PVC to slow down neutrons due to multiple collisions with hydrogen (mostly)

With PVC thicknesses up to 10 cm, we are sensitive to MeV neutrons!

Neutron monitoring

Recovering the neutron flux from NCD rate measurements Likelihood approach

Definition of the likelihood function:

$$\mathscr{L}(\vec{F}) = \prod_{i=1}^{l} \exp\left[-\frac{(N_i^{th} - N_i^{obs})^2}{N_i^{obs}}\right]$$

Expected neutron flux reconstruction sensitivity using maximum likelihood distribution

This example considers:

- MITR theoretical neutron flux
- 10 neutron energy bins
- 11 PVC layers
- An acquisition time of **20 minutes** per layer

Reconstruction of the neutron flux at MITR (expected sensitivity)

Reconstructed total flux = 0.348 ± 0.021 neutron /s/cm² (~5% uncertainty) Validation of the method using a monoenergetic deuteron neutron source is ongoing...

Radiogenic Backgrounds

Poly shield	Pb shield	Cu housing	Detectors	
• U, Th, K	• U, Th, K	U, Th, KCosmic activationRadon Daughters	 U, Th, K Cosmic activation: L-, M-shell EC lines in Ge Radon Daughters 	

Contamination Assumptions

	238U [mBq / kg]	232Th [mBq / kg]
Outer Pb	3.8	9.4
Inner Pb	1	1
Outer poly	0.8	1.2
Inner poly	0.8	1.2

U, Th Spectra

U, Th Spectra

U, Th Spectra

Sterile Neutrino Search at the ATR?

If we mount the experiment on rails, can we search for sterile neutrinos at the ATR? Oscillation length for 3 MeV neutrinos is around 3 m.

$$P_{\rm osc}(\nu_a \to \nu_b) = \sin^2(2\theta) \sin^2\left(\frac{1}{4\hbar c} \Delta m^2 \frac{L}{E}\right)$$

Run period	1 year at each baseline		
Baselines	4,6 m for MITR, 7,10 m for ATR		
Target	Ge		
Core size	0.38x0.61 m for MITR, 1.2x1.2 m for ATR		
Flux	²³⁸ U only, from Mueller		
Neutrino rate	$3.2E25 \ \overline{\nu}/\text{year for MITR}, 6.4E26 \ \overline{\nu}/\text{year for ATR}$		
Active volume	10 kg		
Detection efficiency	60%		
Background (flat spectrum)	4.4 cts/kg/day in 6 kg fiducial		
Energy threshold	100 eVr		
Flat syst. unc. (mostly flux norm.)	2%		
Correlation coefficient between baselines	0.99		
Energy smear near threshold	20%		

Sterile Neutrino Search

Ricochet Phase 2 (MeV-scale Neutrinos)

The Detector

- Given historical precedent, we focus on Transition Edge Sensors (TES) as the technology to push down to the 10 eV scale.
- Energy resolution dominated by the total heat capacitance of system (Ctot).
- At 15 mK, a 10 eV threshold could be achieved with a system capacitance of Ctot < 300 pJ/K.
- Model must include noise sources from other internal decouplings.

$$\sigma_E \approx \sqrt{\frac{4k_B T^2 C_{\rm tot}}{\alpha} \sqrt{\frac{\beta+1}{2}}}$$

 $T_{\rm b}$

Detector Optimization

- System's mass optimized to reach 10 eV threshold assuming 15 mK temperature.
- Yields 50 g Si (20 g Ge) cube.
- Signal pulses show remarkable linearity.

Backgrounds and Systematics

- Backgrounds stem from various sources:
- Radiogenic impurities (U, Th, 60Co, and 3H). Most have signatures well above region of interest. Some, like 3H, have betas that have phase space in ROI.
- Compton and photo-absorption.
- Surface photons from atomic transitions.
- Neutrons (< 0.1 eV/kg/yr in 10-100 keV, from CDMS measurements)
- Neutrino-elastic scattering (not in energy range)

Source	Systematic		
	Global	Shape Only	
Source Strength	±1%	-	
Cross-section	±1%	-	
Detector Variation	$\pm 2\%$	±2%	
Absolute Efficiency	$\pm 5\%$	-	
Source-Induced Background	< 1%	< 1%	
Vertex Resolution	$\pm 2.8~\mathrm{cm}$	$\pm 2.8~\mathrm{cm}$	
Source Extent	$\pm 4~\mathrm{cm}$	$\pm 4~\mathrm{cm}$	
Total Systematic	±5.5%	±2%	
Statistical (Whole Array)	±1%		

Estimates from CDMS place background at 40 events/kg/day/ keV in the 1-10 keV region.
Leads to 1-2 events/kg/day in ROI

Sensitivity Studies

- Wanted to determine what the potential sensitivity of such an experiment for a sterile neutrino at the 1 eV mass splitting scale.
- Array of 10,000 elements with Ar/ Cr source just outside shield (10 cm closest distance).
- Measuring time of 300 days (for Ar, equivalent of 50 days signal, 250 days background).
- Background rate of 1 event/kg/day

Results

- Sensitivity study performed on 10,000 element array (500 kg Si, 200 kg Ge), Ar or Cr source
- Assumed 300 day measuring time with background rate of 1 event/kg/day.
- Analysis on shape + rate (bulk result from shape)
- Mock signal also tested.

Results

- Sensitivity study performed on 10,000 element array (500 kg Si, 200 kg Ge), Ar or Cr source.
- Assumed 300 day measuring time with background rate of 1 event/kg/day.
- Analysis on shape + rate (bulk result from shape)
- Mock signal also tested.

Alternate Measurements

CEVNS measurement

 $sin^2\theta_W$ measurement

dark matter detection

